Closing capacity of cranial bone defects using porous calcium phosphate cement implants in a rabbit animal model.

نویسندگان

  • H C Kroese-Deutman
  • J G C Wolke
  • P H M Spauwen
  • J A Jansen
چکیده

Calcium phosphate (Ca-P) cement is a well established material for bone repair. The bone biological properties of Ca-P cement can even be further improved by creating porosity in the material. The current study aimed on the evaluation of the osteoconductive behavior of porous Ca-P cement. Therefore, circular defects (6, 9, and 15 mm in diameter) were created in the cranium of 3 months old rabbits and filled with porous Ca-P cement implants. The total porosity of implants was calculated to be 71, 74 and 74% respectively and the average pore diameter was 150 microm. In addition, empty control defects were prepared. After 12 weeks implantation time the animals were sacrificed and radiographic, histological, and histomorphometrical evaluation was performed. The Critical Size Defect (CSD) of this species at this location for an implantation time of 12 weeks was confirmed to be 15 mm. Bone was observed to be present over and through almost all porous Ca-P cement implants. Only, in one out of eight animals with a 15 mm implant complete bone bridging of the defect did not occur. The size of the defect was found not to affect the total percentage of bone formation in the cement; (17 +/- 7)%, (18 +/- 6)% and (17 +/- 3)% for respectively 6, 9, and 15 mm diameter implants. We concluded that porous Ca-P cement is an excellent osteoconductive material in non weight bearing situations and complete bridging of a critical sized skull defect occurs in this rabbit model after 12 weeks of implantation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torque test measurement in segmental bone defects using porous calcium phosphate cement implants.

This study was performed to assess the bone healing supporting characteristics of porous calcium phosphate (Ca-P) cement when implanted in a rabbit segmental defect model as well as to determine the reliability of torque testing as a method to verify bone healing. The middiaphyseal radius was chosen as the area to create bilaterally increasing defect sizes (5, 10, and 15 mm), which were ...

متن کامل

Comparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect

Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (...

متن کامل

Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats

BACKGROUND Calcium phosphate cements are used frequently in orthopedic and dental surgeries. Strontium-containing drugs serve as systemic osteoblast-activating medication in various clinical settings promoting mechanical stability of the osteoporotic bone. METHODS Strontium-containing calcium phosphate cement (SPC) and calcium phosphate cement (CPC) were compared regarding their local and sys...

متن کامل

Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.

Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regenerat...

متن کامل

Effect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement

In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of   wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 2006